Home Page | CV | Research| Tetrahymena Links | Cell Biology Links | Microscopy Links| Data Presentation Links


Smith, H. E. 1982. Oral apparatus structure in the microstomal form of Tetrahymena vorax. Trans. Am. Microsc. Soc. 101: 36-58.

Sherman, G. B., H. E. Buhse, Jr. & H. E. Smith. 1982. Physiological studies on the cytopharyngeal pouch, a prey receptacle in the carnivorous macrostomal form of Tetrahymena vorax. J. Protozool. 29: 360-365.
Smith. H. E. 1982. Oral apparatus structure in the carnivorous macrostomal form of Tetrahymena vorax. J. Protozool. 29: 616-627.
Buhse, H. E., Jr., H. E. Smith & G. B. Sherman. 1983. Scanning electron microscopic examination of Ca2+-induced food vacuole formation in the carnivorous macrostomal form of Tetrahymena vorax, strain V2S. Scanning Electron Microsc. 1982. IV: 1661-1666.
Smith, H. E., & H. E. Buhse, Jr. 1983. On the origin of the deep fiber in Tetrahymena. Trans. Am. Microsc. Soc. 102: 264-271.
Smith, H. E., & H. E. Buhse, Jr. 1984. On the origin of the microtubular deep fiber. Bioscience 33: 588-589.
Smith-Somerville, H. E., & H. E. Buhse, Jr. 1984. Changes in oral apparatus structure accompanying Ca2+-induced vacuolar formation in macrostomal form of Tetrahymena vorax. A model for the formation of food vacuoles in Tetrahymena. J. Protozool. 31: 373-380.
Ryals, P. E, & H. E. Smith-Somerville. 1985. Enhancement of macrostome formation in a low-transforming subline of Tetrahymena vorax by alpha-tocopheryl succinate and related compounds. Trans. Am. Microsc. Soc. 104: 341-349.
Mislan, T. W., & H. E. Smith-Somerville. 1986. Food vacuole morphology and membrane retrieval in the microstomal form of Tetrahymena vorax. J. Protozool. 33: 172-179.
Smith-Somerville, H. E., M. E. Verchot & P. E. Ryals. 1986. Food vacuoles during heat shock induced transformation from the microstomal to the macrostomal cell type of Tetrahymena vorax. J. Protozool. 33: 261-266.
Ryals, P. E. & H. E. Smith-Somerville. 1986. Studies of macrostome formation in low-transforming Tetrahymena vorax. Transformation enhancers, generation time and membrane fluidity. J. Protozool. 33: 382-387.
Smith-Somerville, H. E. 1989. Correlation of digestive stage with changes in amphiphilic phagosomal proteins of Tetrahymena vorax. Eur. J. Cell Biol. 49: 48-54.
Smith-Somerville, H. E., V. B. Huryn, C. Walker & A. L. Winters. 1991. Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax. Appl. Environ. Microbiol. 57: 2742-2749.
Shea, C., J. W. Nunley, J. C. Williamson & H. E. Smith-Somerville. 1991. Comparison of the adhesion properties of Deleya marina and the exopolysaccharide mutant strain DMR. Appl. Environ. Microbiol. 57: 3107-3113.
Shea, C., & H. E. Smith-Somerville. 1994. The effects of phenotype variability on adhesion properties of Deleya marina. Biofouling 8: 13-25.
Shea, C., L. J. Lovelace, & H. E. Smith-Somerville. 1995. Deleya marina as a model organism for studies of bacterial colonization and biofilm formation. J. Ind. Microbiol. 15: 290-296.
Smith-Somerville, H. E., J. K. Hardman, R. Timkovich, W. J. Ray., K. E. Rose, P. E. Ryals, S. H. Gibbons, & H. E. Buhse, Jr. 2000. A complex of iron and nucleic acid catabolites is a signal that triggers differentiation in a freshwater protozoan. Proc. Natl. Acad. Sci. USA. 97: 7325-7330.
Ryals, P. E., H. E. Smith-Somerville, & H. E. Buhse, Jr. 2002. Phenotype switching in polymorphic Tetrahymena. A single cell Jekyll and Hyde. Int. Rev. Cytol. 212: 209-238.
Ziemkiewicz. H. T., M. D. Johnson & H. E. Smith-Somerville. 2002. Phytate as the sole phosphate source for growth of Tetrahymena. J. Euk. Microbiol. 49: 428-431.

Smith-Somerville, H. E., H. T. Ziemkiewicz & P. E. Ryals. 2005. Protozoan nutrition and metabolism. In: Nature Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester. [doi: 10.1038/npg.els.0001928]

Updated December 10, 2009