Trichotomy Thesis: There is an exhaustive set of mutually exclusive relationships of quantitative comparison consisting of greater than, less than, and equal to.

Proposed Counterexamples: Literary contest; Law career vs. hang-gliding career; Stonehenge vs. Salisbury Cathedral; Michelangelo vs. Mozart.

The Argument from Small Improvements

1. Trichotomy Thesis (TT) Suppose for *reductio*
2. \(\neg(A > B) \) & \(\neg(A < B) \) Premise
3. \(A^+ > A \) Premise
4. \(\neg(A^+ > B) \) Premise
5. \(A = B \) 1, 2
6. \(A^+ > B \) 3, 5, Principle of Transitivity
7. \((A^+ > B) \) & \(\neg(A^+ > B) \) 4, 6, Conjunction
8. \(\therefore \neg\text{TT} \) *Reductio ad Absurdum*

The Structure of Parity

Biased Difference: The difference between \(A \) and \(B \) with respect to \(Q \) is *biased* \(=_d \) A and \(B \) are different in a way that favors one over the other.

Unbiased Difference: The difference between \(A \) and \(B \) with respect to \(Q \) is *unbiased* \(=_d \) there is a difference between \(A \) and \(B \), and it’s not the case that the difference between \(A \) and \(B \) favors one over the other.
Parity: A and B are on a par with respect to $Q = \triangleq A$ and B are comparable with respect to Q, but neither A nor B is greater than the other, nor are they equal; the difference between A and B is nonzero but unbiased.

Equality: $[(A = B) \& (A^+ > A)] \Rightarrow (A^+ > B)$

Parity: $[(A \approx B) \& (A^+ > A)] \not\Rightarrow (A^+ > B)$